Op den Inhalt sprangen

Grupp (Algeber)

Vu Wikipedia
(Virugeleet vu(n) Grupp)
Dëse Mathematiksartikel ass eréischt just eng Skizz. Wann Dir méi iwwer dëst Theema wësst, sidd Dir häerzlech invitéiert, aus dëse puer Sätz e richtegen Artikel ze schreiwen. Wann Dir beim Schreiwen Hëllef braucht, da luusst bis an d'FAQ eran.

Eng Grupp ass an der Algeber eng algebresch Struktur, déi Symmetrien a reversibel Transformatiounen duerstellt.

Eng Grupp ass eng Koppel vun engem net eidelen Ensembel an enger binärer Operatioun op

déi follgend Axiomer erfëllt:

  • Fir all , , gëllt:
          .[1]
(Assoziativitéit)
  • Et gëtt en neutraalt Element , sou dass fir all gëllt:
          .[2]
(Existenz vum neutralen Element)
  • Fir all existéiert en inverst Element mat
          .[3]
(Existenz vum inversen Element)

Eng Grupp ass also e Monoid, an deem all Element en Inverse huet.

Abelsch Gruppen

[änneren | Quelltext änneren]

Eng Grupp heescht abelsch oder och kommutativ, wa se zousätzlech zu den uewe genannten Axiomer nach déi follgend Bedéngung erfëllt:

  • , gëllt:
          .
(Kommutativitéit)

Am anere Fall, d.h. wann et Elementer , gëtt mat , gëtt d'Grupp net-abelsch respektiv net-kommutativ genannt.

  1. Dowéinst kann een d'Klamere fortloossen: .
  2. Dat neutraalt Element ass automatesch eendeiteg, well wann en neutraalt Element ass, da gëllt
  3. Den Inverse ass och eendeiteg, well wa en Inverse vun ass, dann ass